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SHEAR LAG APPROXIMATION OF SOLUTIONS OF
NEARLY UNIDIRECTIONAL PROBLEMS IN ELASTIC

MEDIA
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Abstract-A simple mathematical model similar to one which has been used in shear lag analyses and to describe
the continuum limit of a multilayer sandwich material is suitable for obtaining estimates of solutions to problems
in isotropic elasticity if it can be assumed that the stress or strain distribution is nearly unidirectional. The model
is applied to the case of an end-loaded cantilever beam in which warping of the cross section is prevented at the
support. The transverse deflections predicted are in close agreement with the results of Euler-Bernoulli theory
with an added shear contribution, and in regions away from the support the axial stress distribution follows a
linear variation. However, intricate end effects are predicted near the support with stress intensification at the
outer fibers. These end effects become negligible a short distance away from the support, in agreement with
Saint-Venant's principle.

INTRODUCTION

A MATHEMATICAL model is obtained from the two-dimensional equations of isotropic
elasticity by assuming in one direction, either zero normal stress or zero normal strain.
The governing equations are similar to those for both the continuum limit of a multilayer
composite medium and particular orthotropic elastic media. This model is suggested as a
simple tool for obtaining approximate solutions to certain problems in isotropic elastic
media where the stress or strain distribution may be nearly undirectional. The zero normal
strain assumption is the basis for the shear lag model developed by Hildebrand [1] and
the approximate method of von Karman and Chien [2] for treating problems of torsion
with variable twist. The present discussion indicates that the range of applicability of such
simplifications includes a wider class of problems. Although these simplifications are not
new, they have not been popularized for the type of problem discussed herein. It is felt
that because they may be of considerable usefulness, their properties should be more fully
investigated.

The model consists of a Laplace-type equation for displacements in the direction of the
essential normal stresses and a total equilibrium equation in the transverse direction.
That a similar model describes a multilayer sandwich beam when the number of layers is
large and the layer spacing is uniform was demonstrated by Tarnopolskii, et al. [3]. It was
noted in [1, 3] that the behavior of a particular orthotropic medium is also governed by this
model. Although the discussion in this paper centers on the two dimensional case, similar
treatment can be applied to certain three dimensional problems.

The model is applied here to the case of an isotropic elastic end-loaded thin rectangular
cantilever beam in which warping of the cross section is prevented at the built-in end
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FIG. I. Cantilever beam wiih warping prevented at the support.

(Fig. 1). Intricate end effects at the support are predicted with stress intensification at the
outer fibers.

SIMPLIFICATION OF EQUATIONS OF ELASTICITY

The Navier equilibrium equations for plane stress with body forces neglected can be
written

and

a[ E (au av)] a[ (au av)]- --- -+v~ +~ G -+-ox (l-v2) ox ay ay oy ox o (1)

(2);y[(l~V2)(:~+v:;)]+o~[G(:;+;:)] = 0

where E is Young's modulus, v is Poisson's ratio, G is the shear modulus and standard
notation has been used for the other quantities.

For the case v = 0 the assumptions l1y 0 and By = 0 are identical and imply that
v v(x). Equations (1) and (2) simplify to

iJ2u G iJ2 u
ox2 +jf oyZ = 0 (3)

and

G~(~+d:) = O. (4)
ox oy dx

For a problem in which v actually does depend on y to a small degree the effect ofthe term
neglected in (l) may be assumed small relative to the effects of the other terms retained
whereas the effect of the simplification of(2) which results in (4) imposes a severe restriction.
Indeed (4) implies that the shear stress must be independent of x which in turn restricts the
I1x stress variations to be linear in x.

For the beam then, a total equilibrium equation in place of (4) is less restrictive. That
total equilibrium is consistent with the assumption of zero transverse strain can be readily
seen by the use of the principle of minimum potential energy. For the end-loaded beam the
potential energy, 11:, under the present restrictions can be written



(5)
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where P is the end load which we will assume is distributed over the free end in an ideal
parabolic manner. Minimization of rr, keeping in mind that v = v (x), leads to the field
equation (3) and the total equilibrium equation for a beam of unit width

a fh (au dV)- -+- dy=O
ax -h ay dx

along the beam with the corresponding boundary conditions

u = v = 0 at x = 0,

au +dv = 0 at y= ±h,
ay dx

au = 0 at x = l,
ax

and

(i)

(ii)

(iii)

fh (au + dV) dy = ~ at x = l. (iv)
-h ay dx G

For the more general case where v =P 0, the assumption (Jy = 0 reduces (1) to

a2 u 1 a2u
-+--=0 (6)ax 2 2+ v ay2

while the assumption Gy = 0 reduces (1) to

a2
u +(1- v) a2

u = 0 (7)
ax 2 2 ay2 .

For two dimensional problems the model, then, consists of the modified Laplace
equation such as (3), a total equilibrium equation such as (5)t, together with a suitable set
of boundary conditions for a given problem.

CANTILEVER BEAM SOLUTIONS

The solution for the cantilever beam example for the case v = 0 is obtained by a straight­
forward separation of variables procedure. We find

v = i anJ(E/GHcos(Anx)-I] cosh J(E/G)Anh,
n=O

u = i an sin AnX sinh J(E/G)AnY,
n=O

(8)

(9)

t More generally, with a distributed loading q(x) per unit length along the top or bottom surface of the beam
the total equilibrium equation (5) is replaced by

along the beam.

ofh (OU ov) q- -+- dy-­ox -h oy ox - G
(Sa)
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and a corresponding axial stress distribution

au 00

(Jx = Eax = E n~o anAnCOsAnX sinh J(E/G)AnY

where

(10)

and

A =(2n+l)
n 2/' n = 0, 1,2, ... , (11)

(12)
an = IGAn(sinh J(E/G)Anh -J(E/G)Anh cosh J(E/G)Anh)'

The stress expression (10) converges at all points except where the outer fibers meet the
wall. There the series is properly divergent for finite G indicating a singularityt. For
infinite G the distribution reduces to the linear one of Euler~Bernoulli theory. That the
exact theory of elasticity predicts a singularity at the corners of a cantilever whose built-in
end is completely fixed is indicated by Williams' results [5].

An alternate form of the solution can be obtained using moment equilibrium and axial
force equilibrium at all x in place of (ii) as the two sets of conditions are interchangeable.
In this procedure the u field is determined completely without simultaneously finding v.
Hence the model, in a sense, decouples u and v.

For nonzero Poisson's ratio, assuming (Jy = 0, v = v(x, y) and the model will indicate
an unrealistic lateral expansion and contraction at the built-in end as in the Saint-Venant
cantilever solution. As in the previous case, here

(13)

Using the moment and axial force equilibrium conditions in place of (ii), and solving (6)
we find

00

u = I an sin AnX sinh AnJ(2 +v)y
n=O

where An is given by (11) and

(
2+V) P

an = 2 +2v IGAn[sinh J(2 + v)Anh-J(2 + v)Anh cosh J(2+ v)Anh]'

With little difficulty it is found for this case that

00 1
v = - v L J(2+0an COsAnX cosh AnJ(2 + v)y

n=O (2+v)

2(1+v) 00 an . ~ Px
+ (2 + v)h n~o An [COS(AnX) -1] smh[Anv (2 +v)h] +2Gh'

t The divergence of (10) at the corners can be shown by subtracting the divergent series

+ PJ(E/G) ~ _1_
nh o=o(n+1)

from (10) and showing the convergence of the resulting expression using Raabe's test [4].

(14)

(15)

(16)
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The solution of (7) for the assumption €y = 0 is of the same form as obtained in the
previous cases:

u = Jo an sin AnX sinh J[(1 ~ V)}·nY,

where an is given by (12) with E/G replaced by 2/(1- v). Here

v(x) = J[(1 ~ V)] n~o an[cos(Anx)-I]coshJ[(1 ~ V)}>nh

with the axial stress given by

NUMERICAL RESULTS

(17)

(18)

(19)

For all computations, the value of P/2hE was taken to be i x 10- 4
• To study the effects

of beam length variations the parameter '1 == l/h was given the values 2, 4 and 10. Poisson's
ratios of zero and 0·3 were considered.

In Fig. 2 the stress intensification is exhibited for the case v = 0, '1 = 2, uy = O. The
upper curve represents the stress along a fiber whose position is Y = 0·995h and the upper
dashed line represents the corresponding linear stress distribution value for that fiber.
Note that x = x/I and y = y/h.
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FIG. 2. Stress variation with axial position (cry = 0)'1 = 2, v = o.
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In Figs. 3-5 the stress distributions through the depth are shown for various cross
sections. It can be seen that the effect of varying Poisson's ratio is of secondary impor­
tance, with the curves lying very close to one another. Comparing these cases it is seen
that as a percentage of the length of the beam, the nonlinearity of the stress distribution
extends further from the wall the shorter the beam. However as a percentage of the depth
the extension of the wall disturbance into the beam is about the same for all beams. This
can best be demonstrated by studying the variation of the Yxy distribution.
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FIG. 3. Stress variation through depth (O'y = 0)1/ = 2.
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FIG. 4. Stress variation through depth (O'y = 0)1/ = 4.
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FIG. 5. Stress variation through depth (ay = 0)" = 10.

In Fig. 6 it is seen that near the wall there is a transition in the shear strain distribution
from rectangular through the depth to parabolic. In Fig. 7 we have plotted the ratio of the
shear strain along the central fiber to its value at the wall. The upper curve is for v = 0
and it can be seen that this curve also is modified only slightly by variations in v. For all
values of 11, essentially the same curve applies if we use abscissae scaled as shown. Thus it is
seen that for beams of various lengths the shear stress distribution changes from rectangular
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FIG. 6. Shear strain distribution variation near wall (ay = 0), v = 0,,, = 2.
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FIG. 7. Variation in shear strain along the length for neutral axis (iT y = 0).
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to parabolic within a distance comparable to the depth of the beam. The yxy surface is shown
in Fig. 8. The "pull" on an infinitesimal fiber is proportional to the slope in the y-direction
integrated along the x-direction. Note that the slope becomes infinite along the outer
fibers at the wall.

It is of interest to compare the transverse displacements of the central fiber with those
from Euler-Bernoulli beam theory with an added shear term using Cowper's results [6Jt.

y

FIG. 8. Isometric view of YXy surface.

t It ~hould be pointed out that displacement results were presented in [3) for a centrally loaded simply sup­
ported multilayer beam each half of which is equivalent to a cantilever beam with an unwarped end under the
restrictions of the multilayer model. In the case ofan elastic medium, there is a distinction between the cantilever
and simply supported beam problems and the model approximates only the cantilever solution when the axial
field is examined in detail.



Shear lag approximation of solutions of nearly unidirectional problems in elastic media 793

In general there is little difference between the transverse deflections obtained with the
present method in the case uy 0 and the Euler-Bernoulli theory with the added shear
term. The numerical results for end deflection of the central fiber are given in tabular form
below. Here v = vii.

TABLE 1. CoMPARISON OF PRESENT RESULTS FOR END DEFLECTION WITH THOSE OBTAINED
FROM THE EULER-BERNOULLl--COWPER SOLUTION

vX 104 VX 104

11 Euler-
Equation (16) ... try = 0 Equation (18) .. . 6y = 0 Bernoulli-

Cowper

2 1·060 1·060 1·067
v=O 4 3·063 3·063 3·067

10 17·065 17·065 17·067

2 1·189 1-116 1-177
v = 0·3 4 3·195 2-941 3·177

10 17'199 15'685 17·177

Data was also obtained for the transverse displacements of the outer fibers for the case
U y = O. The maximum difference between outer and central fiber deflections, which occurs
at the wall, was generally very small, being less than one per cent of the end deflection for
the long beam ('1 = 10). Hence it would be reasonable to simplify the procedure for ob­
taining the transverse displacement by assuming v = v(x) and following the same procedure
as in the ey = 0 case. This simplification is consistent with the others inherent in the model.

In Fig. 9 a comparison is made between the stress distribution obtained at the wall
under each of the assumptions uy = 0 and ey O. The curve shown is a blow-up of the
region near the outer surface where the deviation is most pronounced. Note that only the
case for v = 0·3 is shown because when v = 0 both distributions are identical.
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FIG. 9. Detail of stress distribution near wall corner 11 = 2, v = 0·3.
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DISCUSSION OF RESULTS FOR CANTILEVER BEAM

The assumptions made are coarse, and rule out the possibility of determining field
information for the transverse direction. However, the field information obtained for the
axial direction under the two alternate assumptions, O'y 0 or By = 0, is substantially the
same in this example. That the transverse deflection predictions based on the 0'y = 0
assumption are essentially in agreement with earlier estimates is gratifying. The mild
discrepancies exhibited in the transverse deflections predicted under the Gy = 0 assumption
are due to the unrealistic restraint imposed in this case which implies a stiffer Young's
modulus [E/(1- v2

) vs. E].
The model has also been applied to elastic layer problems. Comparisons to solutions

from the exact theory have shown that the model yields reasonably accurate results for
information in the direction of essential stresses even in areas where the zero transverse
stress or strain assumptions would not seem applicable.

CONCLUSIONS

Under appropriate assumptions the equations of isotropic elasticity yield a simple
mathematical model which has been shown to give reasonable results for the beam example
discussed. It is felt that in the type of problem for which the model is applicable the field
information in the dominant direction is relatively insensitive to the particular coarse
assumption made for the transverse direction. The ease with which this method can be
applied to problems with rectangular boundaries justifies its consideration as a tool for
obtaining estimates.

The model's apparent ability to describe end effects in beams is noteworthy. In place of
the usual treatment of end boundary conditions in such problems in which only resultant
forces and moments can be accommodated, with this model detailed normal stresses or
displacements can be prescribed. End shear stress distributions, however cannot be pre­
scribed arbitrarily. This is a limitation of the shear lag model which has previously been
noted [7, 8].

The authors recently learned that the type of model discussed above, but with inertia
forces added, was used by Budiansky and Kruszewski [9] in investigating the vibrations of
hollow thin-walled beams and by Matuo and Ohara [10] in determining the lateral earth
pressure on walls during earthquakes. However, because the simplifications used have not
been generally popularized and the present journal is more readily available than the cited
references it is felt that discussion of the model here is in order.
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AiicTpaKT-3JIeMeHTapHall MaTeMaTH'IecKall MO,lIeJIb, nO,lI06Ha K IlpHMeHlIeMoH B aHanH3e C,lIBHra cPa3 H
,lI,lI1I OIIHcaHHlI npeyeuH KOHTHHyyMa MHOrOCJIOHHOrO MaTepHana, HCIlOJIb3yeTcll ,lIJIlI ou:eHKH pemeHHH
3a,!Ia'l, B paMKax ynpyrocTH H30TpouHoro Tena, ecJIH npe,lIIlOJIo:IKHTb, 'ITO pacupe,lIeneHHe HaUpllJKeHHH
HJIH ,lIe<PoPMaU:HH He 3aBHCHT OT HaUpabJIeHHlI. 3ra MO,lIenb uplfHHMaeTCll ,lIJIll CJIy'lall KOHCOJIbHOH 6aJIKH,
HarpYJKeHHOH Ha KOHu:e, B KOTOPOH He .u;onymeHa ,lIeUJlaHailHlI ce'leHHll B MecTe 3a,lIe11KH. ilouepe'lHbIe
upom6bI xopomo comaCYlOTClI C pe3YJIbTaTaMH TeopHH 3ltJIepa-EepHYJIJIH, rtpH y'leTe ,lI06aBO'IHOH
'1aCTH OT c.u;BHra. B paltoHax OT.u;aJIeHHbIX OT onopbI, pacnpe,!IeJIeHHe oceBbIX HanpllJKeHHH H3MeHlleTClI no
11HHeltHoMY 3aKOHY. O,!IHaKO, CJIOJKHbIe KpaeBbIe 3QJ<IleKTbI oupe.u;eJIlIlOTCll B611H3H OUOPbI POCTOM
HanpllJKeHHH BO BHemHbIX BOJIOKHax. 3THe 3QJQJeKTbl OKa3bIBalOTClI He3Ha'lHTeJIbHbIMH Ha He6011bmOM
paCCTOllHHH OT OUOPbI, comaCHO UpHHilHUy ,!Ie CeH-BeHaHa.


